Potensi Cangkang Kemiri (Aleurites moluccana (L.) Willd) sebagai Prekursor Karbon Aktif dengan Variasi Aktivator: Review

Main Article Content

Rozalia Rozalia
Ayulian Sara

Abstract

Karbon aktif merupakan salah satu adsorben yang banyak dimanfaatkan dalam pengolahan air karena memiliki luas permukaan tinggi dan struktur pori yang berkembang. Produksi karbon aktif masih bergantung pada bahan baku tak terbarukan dan berbiaya tinggi. Oleh karena itu, pemanfaatan limbah biomassa sebagai prekursor karbon aktif menjadi pendekatan yang semakin relevan dalam kerangka ekonomi sirkular. Salah satu biomassa yang berpotensi dikembangkan menjadi karbon aktif yaitu cangkang kemiri (Aleurites moluccana (L.) Willd). Artikel review ini bertujuan untuk mengkaji secara komprehensif potensi cangkang kemiri sebagai bahan baku karbon aktif dengan fokus pada pengaruh variasi aktivator terhadap karakteristik dan kinerja absorpsi karbon aktif yang dihasilkan. Kajian dilakukan melalui analisis kritis literatur terkait potensi tempurung kemiri sebagai bahan baku, proses produksi karbon aktif, jenis aktivator dan pengaruhnya terhadap arang aktif serta analisis kritis mengenai karbon aktif cangkang kemiri. Hasil kajian menunjukkan bahwa jenis aktivator (asam maupun basa) berperan signifikan dalam menentukan struktur pori, luas permukaan dan kapasitas adsorpsi karbon aktif. Aktivator asam cenderung menghasilkan karbon aktif dengan gugus fungsi permukaan yang kaya, sedangkan aktivator basa efektif dalam pembentukan mikropori. Cangkang kemiri memiliki potensi besar sebagai prekursor karbon aktif. Namun, tantangan mengenai keberlanjutan proses, konsumsi energi dan limbah kimia masih perlu diatasi. Review ini diharapkan menjadi dasar pengembangan riset lebih lanjut dan penerapan teknologi karbon aktif yang efisien, ramah lingkungan dan berkelanjutan.

Article Details

How to Cite
Rozalia, R., & Sara, A. (2025). Potensi Cangkang Kemiri (Aleurites moluccana (L.) Willd) sebagai Prekursor Karbon Aktif dengan Variasi Aktivator: Review. GreenTech, 2(2), 279–287. https://doi.org/10.25077/greentech.v2i2.74
Section
Research Articles
Author Biography

Ayulian Sara, Departemen Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Universitas Andalas

Rekayasa Pertanian

References

R. F. Cahyani, N. Nasution, and R. Y. Lubis, “Karakterisasi dan Kapasitansi Elektroda Karbon Aktif Tempurung Kemiri dengan Variasi Aktivator Asam Fosfat (H3po4),” Jurnal Rekayasa Material, Manufaktur dan Energi, vol. 8, no. 1, pp. 32–39, Jan. 2025, doi: 10.30596/RMME.V8I1.19474.

Y. A. Kurniawan and A. Supriyanto, “Komposisi Arang Cangkang Kemiri dan Natrium Karbonat Terhadap Sifat Mekanik dan Struktur Mikro pada Baja Mild Stell,” Jejak digital: Jurnal Ilmiah Multidisiplin, vol. 1, no. 5b, pp. 4040–4050, Sep. 2025, doi: 10.63822/NH9BCJ35.

P. D. Ola, “Pembuatan Arang Aktif dari Tempurung Kemiri (Aleurites Moluccana) dengan Variasi Konsentrasi Zat Pengaktivasi,” Chemistry Notes, vol. 7, no. 1, pp. 14–24, Jun. 2025, doi: 10.35508/cn.v7i1.22590.

Z. Nabila, S. Bahri, L. Maulinda, Wusnah, and F. Hasfita, “Pemanfaatan Asam dari Belimbing Wuluh (Averrhoa Bilimbi l.) untuk Aktivator Karbon Kulit Jagung Hasil Samping Pirolisis sebagai Adsorben Minyak Jelantah,” Chemical Engineering Journal Storage (CEJS), vol. 5, no. 05, pp. 972–980, Oct. 2025, doi: 10.29103/cejs.v5i05.22659.

I. A. Adlin, R. Ismet, S. Amalia, A. Putri, and J. Jufrinaldi, “Optimasi Suhu Pembuatan Arang Aktif dari Ampas Kopi terhadap Penurunan Kadar COD dan BOD pada Air Limbah Tahu,” Jurnal Riset, Inovasi, Teknologi & Terapan, vol. 3, no. 2, p. 42, Jul. 2025, doi: 10.30811/ristera.v3i2.7444.

M. Hamid, N. Haida Mohd Kaus, S. Humaidi, I. Isnaeni, A. Daulay, and I. Revita Saragi, “Activated Carbon from Biomass Waste Candlenut Shells (Aleurites Moluccana) Doped ZIF-67/Fe3O4 as Advanced Materials for Supercapacitor,” Mater Sci Energy Technol, vol. 7, pp. 381–390, 2024, doi: 10.1016/j.mset.2024.07.004.

F. T. Wulandari and D. M. Prasetyo, “Pemanfaatan Limbah Biomassa Cangkang Kemiri dan Tempurung Kelapa Sebagai Biobriket Ramah Lingkungan,” Jurnal Celebica : Jurnal Kehutanan Indonesia, vol. 6, no. 1, pp. 1–12, Jun. 2025, Accessed: Jan. 05, 2026. [Online]. Available: https://celebica.uho.ac.id/index.php/journal/article/view/91

K. Kawulur, H. Taunaumang, S. I. Umboh, C. A. N. Bujung, and Kamaruddin, “Pemanfaatan Karbon Aktif dari Cangkang Kemiri sebagai Elektroda Superkapasitor,” Jurnal FisTa : Fisika dan Terapannya, vol. 6, no. 2, pp. 68–74, Oct. 2025, doi: 10.53682/FISTA.V6I2.475.

A. S. Rezki, Y. R. Wulandari, S. Shintawati, L. Hamam, and E. P. Suryaningtyas, “Analisis Karakteristik Briket dari Limbah Biomassa Mesocarp Fiber dan Cangkang Kemiri Sebagai Bahan Bakar Alternatif,” JURNAL TEKNOLOGI KIMIA MINERAL, vol. 4, no. 2, pp. 79–86, Dec. 2025, doi: 10.61844/jtkm.v4i2.1103.

H. C. Sevindir and M. Doğanay, “Treatment of Paper Wastewater by Palm Kernel Shell-Based Activated Carbon Adsorption,” Advanced Engineering Journal, vol. 5, no. 1, pp. 1–10, Jul. 2025, Accessed: Jan. 05, 2026. [Online]. Available: https://adejournal.org/index.php/adejournal/article/view/11

S. S. Bamerdhah, N. S. Kumar, E. H. Al-Ghurabi, M. Boumaza, and M. Asif, “Optimized Synthesis of Activated Carbon from Date Palm Seeds for Efficient Crude Oil Adsorption in Wastewater Treatment,” Sci Rep, vol. 15, no. 1, p. 31122, Aug. 2025, doi: 10.1038/s41598-025-16831-7.

S. H. Tang, N. A. Rashidi, and H. Y. Lim, “Advancing Biomass-Based Activated Carbon Production: Challenges, Techniques, and Opportunities With Focus oOn Malaysia,” Environ Dev Sustain, Jan. 2025, doi: 10.1007/s10668-025-05998-8.

R. Paredes, E. Garcia-Franco, B. Castells, M.-P. Martínez-Hernando, P. M. Peris, and M. F. Ortega, “Thermodynamic-Based Prediction of Gaseous Species Evolution in Thermogravimetric Analysis,” Thermochim Acta, vol. 754, p. 180180, Dec. 2025, doi: 10.1016/j.tca.2025.180180.

X. Yin, J. Tao, J. Wang, B. Yan, G. Chen, and Z. Cheng, “Prediction of Activation Energy Of Lignocellulosic Biomass Pyrolysis Through Thermogravimetry-Assisted Machine Learning,” Biomass Bioenergy, vol. 194, p. 107644, Mar. 2025, doi: 10.1016/j.biombioe.2025.107644.

J. Fu, S. Weber, and S. Q. Turn, “Comprehensive Characterization of Kukui Nuts as Feedstock for Energy Production in Hawaii,” ACS Omega, vol. 8, no. 25, pp. 22567–22574, Jun. 2023, doi: 10.1021/acsomega.3c00860.

M. R. Fiqriawan, M. Anas, and Erniwati, “Efek Variasi Konsentrasi H3PO4 Terhadap Kualitas Karbon Aktif Cangkang Kemiri Berdasarkan Analisis Proksimat,” Einstein’s: Research Journal of Applied Physics, vol. 1, no. 2, pp. 42–47, Apr. 2023, doi: 10.33772/einsteins.v1i2.155.

I. Mechnou et al., “Activated Carbons for Effective Pharmaceutical Adsorption: Impact of Feedstock Origin, Activation Agents, Adsorption Conditions, and Cost Analysis,” Results in Engineering, vol. 27, p. 105966, Sep. 2025, doi: 10.1016/j.rineng.2025.105966.

E. Menya, P. W. Olupot, H. Storz, M. Lubwama, and Y. Kiros, “Production and Performance of Activated Carbon From Rice Husks for Removal of Natural Organic Matter from Water: A Review,” Chemical Engineering Research and Design, vol. 129, pp. 271–296, Jan. 2018, doi: 10.1016/j.cherd.2017.11.008.

M. C. Silva et al., “H3PO4–Activated Carbon Fibers of High Surface Area from Banana Tree Pseudo-Stem Fibers: Adsorption Studies of Methylene Blue Dye in Batch and Fixed Bed Systems,” J Mol Liq, vol. 324, p. 114771, Feb. 2021, doi: 10.1016/j.molliq.2020.114771.

S. Khaleel, “Synthesis and Characterization of Activated Carbon Produced from Hazelnut Peels by Chemical Activation,” Chemical Industry and Chemical Engineering Quarterly, vol. 32, no. 1, pp. 1–5, 2025, doi: 10.2298/CICEQ240807005K.

A. H. Jawad, R. A. Rashid, M. A. M. Ishak, and L. D. Wilson, “Adsorption of Methylene Blue onto Activated Carbon Developed from Biomass Waste by H2SO4 Activation: Kinetic, Equilibrium and Thermodynamic Studies,” Desalination Water Treat, vol. 57, no. 52, pp. 25194–25206, Nov. 2016, doi: 10.1080/19443994.2016.1144534.

R. F. T. Tagne, J. A. K. Atangana, N. G. Kounou, S. Narra, and I. Ionel, “A Strategy for Mitigating Inhibitors in Hazelnut Shells Through Combined Alkaline and Activated Carbon Treatment to Optimize Cellulosic Ethanol Production,” Fuel, vol. 411, p. 138028, May 2026, doi: 10.1016/j.fuel.2025.138028.

Y. Chen et al., “Study on The Properties of Activated Carbon Based on Activation Process and NaOH Modification,” Advances in Bamboo Science, vol. 12, p. 100186, Aug. 2025, doi: 10.1016/j.bamboo.2025.100186.

K. Ukanwa, K. Patchigolla, R. Sakrabani, E. Anthony, and S. Mandavgane, “A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass,” Sustainability, vol. 11, no. 22, p. 6204, Nov. 2019, doi: 10.3390/su11226204.

T. C. Chandra, M. M. Mirna, J. Sunarso, Y. Sudaryanto, and S. Ismadji, “Activated Carbon from Durian Shell: Preparation and Characterization,” J Taiwan Inst Chem Eng, vol. 40, no. 4, pp. 457–462, Jul. 2009, doi: 10.1016/j.jtice.2008.10.002.

M. A. F. Mazlan et al., “Activated Carbon from Rubber Wood Sawdust by Carbon Dioxide Activation,” Procedia Eng, vol. 148, pp. 530–537, 2016, doi: 10.1016/j.proeng.2016.06.549.

R. G. Pereira et al., “Preparation of Activated Carbons from Cocoa Shells and Siriguela Seeds using H3PO4 and ZnCL2 as Activating Agents for BSA and α-Lactalbumin Adsorption,” Fuel Processing Technology, vol. 126, pp. 476–486, Oct. 2014, doi: 10.1016/j.fuproc.2014.06.001.

Y. Zhao, R. Fan, and L. Feng, “Preparation and Application of Straw Activated Carbon,” IOP Conf Ser Earth Environ Sci, vol. 330, p. 042035, Nov. 2019, doi: 10.1088/1755-1315/330/4/042035.

I. D. O. Kurniawan, R. Y. Kurniawan, N. Widiastuti, L. Atmaja, and A. Shofiyani, “Development of Activated Carbon Material from Oil Palm Empty Fruit Bunch for CO2 Adsorption,” Jurnal Teknik ITS, vol. 8, no. 2, Nov. 2019, doi: 10.12962/j23373539.v8i2.49700.

Z. Zhong, X. Peng, H. Gao, I. Hussain, X. Wang, and B. Tan, “Preparation of Hierarchical Porous Monoliths With High Surface Areas by a Solvent Knitting Strategy,” Macromol Rapid Commun, vol. 46, no. 1, pp. 1–11, Jan. 2025, doi: 10.1002/marc.202400494.

Q. Tian et al., “Preparation of Red Mud Derived Eggshell Coupling Adsorbent and Study on Carbon Dioxide Capture Performance Based on Experiment and Density Functional Theory Simulation,” Sep Purif Technol, vol. 355, p. 129728, Mar. 2025, doi: 10.1016/j.seppur.2024.129728.

K. Kishibayev et al., “Production of Activated Carbons from Corn Cobs Waste by Steam or H3PO4 Activation for Effective CO2 Capture and Industrial Gas Selectivity Towards CO2/CH4/N2,” Fuel, vol. 404, p. 136266, Jan. 2026, doi: 10.1016/j.fuel.2025.136266.

A. S. Ahmed, M. Alsultan, A. A. Sabah, and G. F. Swiegers, “Carbon Dioxide Adsorption by a High-Surface-Area Activated Charcoal,” Journal of Composites Science, vol. 7, no. 5, p. 179, May 2023, doi: 10.3390/jcs7050179.